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=]
5-1 f e(t-s)/é

t
< ++-} of [0,») where

Let f € Ll(O,w), § >0 and (Gaf)(t) = f(s)ds. Given

S % 5 S 4
a partition P {0 to < tl < ti ti+l

ti - ©, we approximate f bLy the step function Apf defined by

A = e
Pf(t) (G .G . G6 £f)(0) for ti-l St ti '
i i-1 1

where 6i =t, - t The main results concern several properties of this

i i-1°
process, with the most important one being that APf - f in Ll(O,w) as
H(P) = sup Gi -+ 0. An application to difference approximations of evolution

i
problems is sketched.
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' Lintiny

SIGNIFICANCE AND EXPLANATION

)
™ A method of approximating functions which are integrable on

(p,m) py Piecewise constant functions is presented and studied
<

in this paper. The method used and the properties established

for it allow one to reduce the study of the convergence of a

difference method of theoretical interest for nonlinear time-

dependent problems with forcing terms to the simpler study of

related problems without forcing terms.

The responsibility for the wording and views expressed in this descrip- B |
tive summary lies with MRC, and not with the authors of this report. 3




AN APPROXIMATION OF INTEGRABLE FUNCTIONS BY STEP
FUNCTIONS WITH AN APPLICATION

M. G. Crandalll) and A. Pazyl)'Z)

This note is concerned with an interesting method of appr <imating an integrable
function f : (0,%) » R by step functions. The approximation process involves the

integral transformation G6 2 Ll(O,w) -+ Ll(o,w) defined for 6§ > 0 by

Y G ey =3 [ " %5 .
t

’

Equivalently, g = GGf is the unique function g € Ll(O,m) which satisfies g - 8g' = f.
Let

P={0=¢t. < t, < «00 < ti < £

0~ " SR

i+l
be a partition of [0,®) with 1lim ti = o, The step sizes of the partition are dencted
i

by Gi; Gi = ti = ti—l' Each partition P determines a piecewise constant approxima-

tion Apf of f defined by

= son < < i = Siele
(2) Apf(t) (GG.GG, G6 f) (0) for ti-l <t ti' 3 1,2,
i i-1 1
The mesh of the partition is denoted by u(P); u(P) = sup 6.. The main results are
1<i<®

summarized in the following theorem.

Theorem: Let P be as above, f € Ll(o,m) and AP be defined by (2). Then

(3) Apf € Ll(O,w) '
(4) | Iagtsrlas < [ [£(s)]as ,
0 (0]

oo ©
(5) | ajf(s)as = [ f(s)as ,

0 0
and
(6) lm [ A f(s) - £(s)|as =0 .

: u(P)>0 0

Sponsored by:
1) The United States Army under Contract No. DAAG29-75-C-0024; and
2) The National Science Foundation under Grant No. MCS78 01245.
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The definition of the transformation f - APf as well as the questions resolved
by the theorem arose naturally from considering difference approximations of certain
nonlinear evolution problems. While this motivation is not relevant for the statement
or the proof (given in Section 1) of the theorem, we do explain it briefly in Section 2.

We are indebted to Carl de Boor for his advice on this problem.

Section 1. (Proof of the Theorem).
Let h,k € Ll(-m,o) and f € Ll(O,w). We define k o f € Ll(O,w) and

h * k € Ll(-W,O) according to

(1.1) (k o £)(t) = [ k(t - s)f(s)ds
t

and
0

(1.2) h » k(r) =

| hr - s)k(s)as .
r

The convolution operator * is commutative and associative, while
(1.3) ho (kof)y=(h®=#=k)of.

For § > 0 we set

(1.4) kg (r) = 8 texp (x/8) .

The transformation G6 in (1) is

(1.5) Géf = k6 L S

et P ={0=¢. < & < »v- € £, <&, < eoo) and 6. = t. - &, be as in the introduc-
0 ) § : 1=1 p Y i =]l

tion and Ap be given by (2). For simplicity of notation we will set

(1.6) ki = k6 and Ki = ki * Ki-l = ki * ki-l LAREIC kl For' A= 2 .

Since ki >0, A clearly satisfies

(1.7) |Apf| :VAp|f|

Moreover by (2), (1.5), (1.6) and (1.3)
€,

1
é A, £l (s)as o (kg ; ® (eee o (ky o (ko [£)).ea)))(0)

2R L~1
(1.8) ;

o i
8,(k, o [£])(0) = g Zl 8K, (=s) |£(s) |as .

]
=
| &1
O
—
=

—

=

I
Il 11

[

L
-2~

RN S o




Since each of the summands ngg('S) in the last integrand is nonnegative, we can

establish (3) and (4) of the theorem by showing that

-1 @

(1.9) ] 6K (r) <1 for -»<r <0
2 28 =
=1

while (5) requires

]

@

(1.10) J 8K, (r) =1 a.e.on -®<r<O0.
gy 22

The following lemma implies (1.9) since l(j =1 >0.

Lemma 1: For each j =1,2,...

j
(1.11) 221 §,K, + Kjel=1.

Proof of Lemma 1l: We proceed by induction. If 3 1 the claim is that élk + kl A=A

1

Indeed, for any 6,

0
(1.12) Skg + kg % 1= a7 % § o s
r

We now assume the claim is true for j = i and verify it for j =i + 1. By (1.12) we
have
i+l

ik =17 L &K

(1.13) K, .*1 =k, _*K.*1=k,
b 1 i+ 2=1

1 i+l *lfKi= (1-6

1 fa g M AL =6

b where the last equality follows from the induction hypothesis. Rearranging (1.13)

yields (1.11) with j =i + 1 and the proof is complete. L]
| We verify (1.10) indirectly. Let
} -0t
i (1.14) f (t) =e .
{ o
5 If o>0
2.
; 1, (t-s)/6 _-os 1 -ot
| (1.15) Ggf)(e) =5 [ e e d
g t
; from which it follows that

- L |

| (1.16) AL 1te) = IjI Qo8] for b, Sty

e
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- ]
and hence
© © 4l 1
(1.17) [ & f)tsias = | &, €& asd™
0 i=1 2=1
Ssetting r, = (1 + cdi)-l we claim that -
(1.18) §r +6rr + .. +68r.r eee Y X O+ u-lr 1 sxie T T = 0_l
11 2021 iii-1 21 1 i=1 25
for i =1,2,... . The proof parallels the proof of Lemma 1. Since X 6i = o,
i=1
we have riri-l wws r1 -0 as i >« and (1.17), (1.18) together imply
] 1 -]
£ === .
g @ £ ) (s)ds = = {)’ £_(s)as

Setting f = fc in (1.8), letting i > « and using the above implies (1.10).
It remains to verify (6). (We remark that the previous results did not require

u(P) < »). 1In view of (4), which is independent of P, it suffices to verify (6)

for a dense subset F of Ll(O,m). It is convenient to choose F = span{f0 S o o
(In fact, span{e-nt :n=1,2,...} is dense in Ll(o,w), as is well known. To see

this, use the change of variables x = e_t which exchanges (0,®) and (0,1) while @

-nt

e becomes xn.) To proceed, we estimate IAPfG - f in terms of u(P). For

ol
convenience of future referencing the simple lemma which does so is stated without using

the notation above.

Lemma 2: Let {5.)}°

o
iti=1 be a sequence of positive numbers satisfying Z 6( = » and
s T

s = = + e i = et = 3 s
>0 Let to 0, ti 61 + 62 + Gi for i 1,2, and yu lj:fm 61 it :

== i

i
gy =TT @+ 062)‘1 S 4
L=1 o

then

uot 02 = -0
S

-0t | -0t

lge) - e < e max{e

Proof of Lemma 2: It is enough to treat o = 1, for then the general result follows

upon replacing {Gi} by {aéi} and t by ot. Elementary calculus yields

1 -6+62
e

(1.19) et s fte for § >0 .

=

!
|
]
!

i
b
|




Multiplying these inequalities yields

(1.20)

-(51+---+6,) i o1 —(61+-..+6£) (6i+...+5i)
e EHas [ (X + &) < e e
— £=1 A -

Using (1.20) and the inequalities

2 2
s e < + e + oo
61 + + Gi < u(al + Gi) and t < 61 F 6i ok
for €. < t < t, establishes
d=] = -
- - - - +
L t(e B <qglt) - e t <e t(eu(t u) _ 1)
and hence Lemma 2 in the case o0 = 1. .
End of proof of the Theorem: By (1.16) and Lemma 2
he ® -os as 02 2 -0
[ Iaf -f |as <[ e “max{e"®% ¥ -1, 1 - e %las
o PO o 5t

where u

complete.

Remark: If m € Ll(-m,O) N Lw(—m,O), ma(r) = 6_lm(r/6) and (1) is replaced by

= u(P)

. The right hand side above tends to zero as u -+ 0, and the proof is

Gsf = m6 o f, the first part of the above proof adapts to establish that
-] «©
[ |af(s)|las <c [ |£(s)|ds
P p—
0 0
provided C > 0 can be chosen to satisfy
0
|m(r)| + C f |m(s)|ds S € ase. =eicirici0
)
This last estimate is equivalent to |m6| + |m6| xCc<c. If |m] 1 <
L (=«,0)
¢ =|lm|| , /@ = lmff )
L (-«,0) L (-=,0)

p : 2 . 1
(Consideration of the case m(r) = 2e shows some such restriction is necessary.)

contrast, our proofs of (5) and (6) required special properties of the exponential kernel.
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Section 2. Motivation

Let X be a Banach space and A be an accretive operator in X (see, e.g., [1],

[2] for terminology). If f € Ll(o,m;x) and x € X, we say that

u' + Au >3 £ .
(2.1)

u(0) = x
has an e-approxim-te solution on [0,T] if there are finite sequences

= .ee it e cC
0 L tl < % and (fl'fZ' ,fN}, {xo,xl ,xN} X such that
Sl
(2.2) t—_——t— + Axi+l E] fi+l’ =01 e, N
AN 3
and
N-1 ‘_ti+l
2.3 2Tt =t <6 on - x| <e ana 'Z ! g ,, - £telllas < e .
i=0 t,
i
In this case, the step function whose value on (t.,t. .] is x, is called an
LU I i+l
e-approximate solution of (2.1). It is shown in [3] that if (2.1) has an e€-approximate
solution on [0,T] for each € > 0, then these solutions converge uniformly as € + O
t
to a unique limit wu € C([0,T];X) which is the solution (in a certain sense) of (2.1).
The estimates which prove this are considerably more involved in the case that £ Z 0
than in the simpler case f = 0. The approximation theorem proved in this note allows
us to reduce the problem (2.1) with a general f € Ll(O,m;x) to the case f = 0 in
: ; ; 1
the following way: Define an operator 4 in X x L (0,®;X) by
D) = p@) x w'lio,=x
and
A(x,9) = {(y - g(0),-g') : y € Ax} .
We show below that A is accretive. Given an e-approximate solution of (2.1) on
; Lyl
[0,T] as above, define {go,gl,...,gN} CwW '"(0,%X) by 9o = f, 61 -, = Kyt
gi+1 =G gi. Then the function whose value on (ti'ti+1] is (xi+1,gi+1) is an
i+l
N-1 Si+l
e+ ) Ilgi+l(0) - f(s)||as approximate solution of .
i=0 ti

-6=




U* + AU 3 0
1 (2.4) A
g . Ui(0) = \(x,£) .

By the (clearly valid) version of Theorem 1 in which Ll(O,m) is replaced by Ll(O,w;X)

the term

N-1 ti+1
{ l|gi+1(0) - £(s)||as

tends to zero as U = max Gi + 0.
i
We now briefly sketch the proof that A is accretive. If 2 1is any Banach space, set

= e + aall, - ll=ll lle + aall, - llell
P (p.ql, = lim 2 Z - inf = a8
ANO A A>0 A
F FE ¥ =X X Ll(O,W;X) is equipped with the norm
| .
Il(x'g)llY = Hx”x + g “9(5)||Xd5 for (x,9) € X
b
a then one computes that
E’ oo
] [(x,9), (y,m) ], = [x,y] + (J; [g(s),h(s)] ds

It follows that A is accretive in Y if for every (x,y),(X,y) € A and

g,9 € wl'l(o,m;x) we have

(2.5) [(x-%,9-9),((y=g(0)) - (y-g(0)),-g" +g")], 1

= [x=%,(y-9) = (g(0) -g(0N], + [ [g(s) -q(s),-g" (s) +g'(s)) ds > O
(0]
The fi:st term in (2.5) is estimated by
.F (2.6)  [x=%,(y=9) = (g(0) =g(0N)], > [x=%, (y=-N1y = llg@ =g ||, > - llgto) - g I, .

where the first inequality is due to the fact that [p,q]z is Lipschitz in g with
constant 1 and the second inequality is because (x.y).(§.§) € A and A 1is accretive.

The second term in (2.5) is given by

oo w

~ ~y d A = 1 T 1
: (2.7) (f) [g(s) =g(s), =g (s) +§'(s)] ds = g - 35 latsr ~atsr llyas = flg@ - g iy i

=7~ 4

T

LN
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since é% Ilk(s)“x = [k(s),k'(s)]x wherever “k(s)“x and k(s) are both differentiable.
Together, (2.6) and (2.7) imply (2.5) and hence that A is accretive.
The system (2.4) was introduced in [4] for another purpose. The results we have

jﬁst obtained reduce many questions concerning (2.1) to the same guestions for f = 0.
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